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ABSTRACT 

Despite the fact that microbes in natural environments spend most of their time in growth arrest, 
we understand little about how this physiological state affects the performance of engineered 
genetic circuits. Here, we measure repression curves from a library of genetic NOT gates at 
single-cell resolution in Escherichia coli under both active growth and growth arrest to 
systematically investigate how growth arrest affects circuit behavior. We find that the impact of 
growth arrest on circuit performance is almost entirely dominated by a single effect: a >100-fold 
reduction in unrepressed expression levels. Growth arrest caused gene expression noise to 
increase moderately and had only minimal impacts on the sensitivity and sharpness of the 
repression curves. Our work shows both that conventional genetic circuit design paradigms are 
currently insufficient to develop circuits that can function properly under growth arrest, but also 
that addressing the reduction in just a single performance parameter would be sufficient to 
resolve this problem. This work expands our understanding of bacterial gene regulation under 
growth arrest and lays the groundwork for new design paradigms that will be essential in 
ensuring the safe and reliable performance of synthetic biology systems in real-world 
environments. 
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Introduction 
Genetic circuit engineering within living cells must contend with the fact that the physiological 

state of the host cell will change under different environmental conditions and thereby affect the 

behavior of the circuit (1–3). Ensuring predictable and reliable circuit performance across 

different conditions is therefore a central goal of synthetic biology. Such efforts are becoming 

increasingly important as the field moves towards developing engineered microbes intended for 

use outside of controlled laboratory environments, such as the gut, soil, and engineered 

structures (4, 5). 

 

Growth arrest is thought to be one of the most common physiological states for microbes in 

nature (6). A number of global physiological responses associated with growth arrest are 

known. These include a reduction in the number of ribosomes and RNA polymerases, 

compaction of the DNA and modifications to supercoiling, and major changes to metabolism 

(6–8). In order for complex genetic circuits to maintain long-term, reliable function in natural 

environments, it will be important to understand how such cellular responses to growth arrest 

affect the performance of these circuits’ constituent parts. 

 

Many of the most complex genetic circuits constructed to date have been built using a 

repression-based architecture, wherein transcriptional repressors are used to implement 

modular NOT and NOR gates that can be wired together to form, in theory, logic circuits of 

arbitrary complexity (9, 10). The behavior of the individual repressors within the circuit are 

characterized by their repression curves, which are typically represented by the Hill relation 

 

, 𝑦 = β

1+ 𝑥/𝐾( )𝑛
+ α

(Eq. 1) 
 
where the input x represents the repressor concentration and the output y represents the 

expression level from the repressed promoter. The parameters 𝛽 and 𝛼 determine the 

unrepressed and maximally-repressed expression levels of the output gene, and K and n 

represent the sensitivity and sharpness of the response to repressor concentration. 

 

Proper circuit function requires that layered repression curves are properly aligned– a simple 

way to represent this condition is to say that the sensitivity of the downstream repressor must lie 
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within the dynamic range of the upstream repressor, i.e. 𝛼1 < K2 < 𝛽1+𝛼1. Factors like the Hill 

coefficient n or the level of gene expression noise affect the magnitude by which these 

inequalities need to hold. Characterizing the full repression curve is therefore essential to 

predicting the performance of the larger circuit. We illustrate the complexities associated with 

repressor composition in Fig. 1 using a NOT-NOT circuit, which buffers signals via OFF-to-ON 

logic and forms the basis for more sophisticated circuit architectures (9, 11) 

 

 
Fig. 1: Schematic representation of the composition of repressors into larger circuits, illustrated by a 
NOT-NOT circuit. Inputs into the first gate (X) are transformed into output values (Y) according to the 
properties of the repression curve, which then become inputs into the second gate to generate outputs of 
the overall circuit (Z). Global changes to the parameters of the repression curve can lead to both 
enhancement (bottom left) and failure (bottom right) of circuit performance. The top circuit has parameters 
𝛽1=200, 𝛼1=0.3, K1=0.1, n1=1 and 𝛽2=8, 𝛼1=0.01, K1=3, n2=1.5. The left transition scales all 𝛽,𝛼,K,n values 
by 1/10,1/5,1/2,2, respectively. The right transition scales all 𝛽,𝛼,K,n values by 1/2,1/5,10,1/2, respectively. 
All units are arbitrary. 
 

However, despite the prominence of growth arrest in application environments like the gut or 

soil, there has been little investigation of its impact on the performance of engineered genetic 

components, including repressors. As a consequence, it is not clear a priori how the cell’s 

physiological responses to growth arrest would affect any of the parameters governing the 
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repression curve, and whether these impacts would preserve or inhibit the ability of a circuit built 

from these repressors to function under growth arrest. 

 

In this study, we set out to investigate whether there are any systematic effects associated with 

growth arrest on the performance of genetic repressors. We used a library of NOT gates based 

on dCas9-mediated repression of the T7 promoter at differing binding locations, engineered in 

Escherichia coli, as a model system to address this question. We found that functional NOT 

gates tended to retain their function under growth arrest with a slightly reduced fold change, but 

that this occurred at expression levels that were ~100-fold lower than in active growth. The 

shape parameters of the repression curves tended to be robust to the change in growth state, 

with the sensitivity and sharpness of the curves affected only minimally. Similarly, gene 

expression noise of NOT gate outputs increased only moderately under growth arrest. We 

further confirmed that these conclusions were consistent with characterization of additional sets 

of NOT gates based on the PhlF repressor and a dCas9*:PhlF fusion protein. Within each set of 

gates, we generally observed that the repression behavior was more similar across gates under 

growth arrest than in active growth. 

 

These results show that current design paradigms for layered repression-based circuits cannot 

lead to reliable circuit performance under growth arrest conditions, but that this failure is almost 

entirely tied to the change in a single parameter, 𝛽. As such, our findings reveal directions for 

future research by which these concrete design challenges could be overcome. Taken together, 

this work enhances our understanding of how growth arrest affects the quantitative properties of 

gene regulation and helps develop a foundation for genetic design principles in natural 

environments. 

Materials and Methods 

Construction of genetic circuits 

All circuits were constructed using 3G Assembly (12) using parts from the CIDAR MoClo 

Extension Part Kit (13), with the exception of custom gRNAs and fusion proteins created for this 

work (see following section). NOT gates were assembled in two cassettes: one contained 

PLacO-driven T7 RNA Polymerase and PT7-driven sfGFP and the other contained PTet-driven 

repressor:mScarlet3 fusion protein and POR1OR2-driven gRNA. The two cassettes were integrated 
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into the Lambda and P21 integration sites, respectively, of the E. coli genome using the pOSIP 

clonetegration system plasmids KL and CT (14). The resulting strains are kanamycin and 

chloramphenicol-resistant. The background strain for all experiments was E. coli Marionette 

MG1655 (15), which natively expresses the LacI and TetR repressors which regulate PLacO and 

PTet, respectively. The existing chloramphenicol resistance gene in the Marionette strain was 

excised prior to circuit insertion using the temperature-sensitive plasmid pE-FLP (14), which was 

then cured by repeated passaging of the strain at 37C. Sequences of all circuit components are 

provided in Supplemental Table 1. 

 

For gates where the PhlO sequence was inserted between genetic parts of the PT7-driven sfGFP 

cassette in various locations and orientations, the relevant portion of the cassette was 

commercially synthesized as a dsDNA fragment flanked by BsaI cut sites and used in lieu of the 

relevant part plasmids in the Golden Gate step of 3G Assembly. All subsequent construction 

steps proceeded as described above. 

Construction of gRNAs and fusion proteins 

gRNAs were constructed as part plasmids in CIDAR MoClo format (16) with a Hammerhead 

ribozyme upstream of the gRNA sequence to standardize the 5’ sequence of the resulting RNA. 

Different gRNA variants were constructed by PCR amplifying the gRNA part plasmid into two 

segments that exclude the 20bp variable sequence using custom primers containing the new 

20bp variable sequence as overhangs, and religating the plasmid using Gibson assembly. 

 

Repressor:mScarlet3 fusion proteins were constructed as part plasmids in CIDAR MoClo format 

by using Gibson assembly to combine PCR amplicons of the mScarlet3 part plasmid (without 

the start codon) and the dCas9 or PhlF part plasmids (without the stop codon) with a 2x GGGS 

linker as the overhang. mScarlet3 was always attached to the C terminus of the repressor. 

 

The dCas9*:PhlF fusion protein was created by commercially synthesizing a dsDNA fragment 

containing the modified region of dCas9 with overhangs to PCR amplicons of the dCas9 and 

PhlF:mScarlet3 part plasmids, and using Gibson assembly to combine the fragments into a full 

dCas9*:PhlF:mScarlet3 part plasmid in CIDAR MoClo format. 
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Growth media design 

Carbon-limited media was created by first preparing a stock of freshwater base (100g NaCl, 40g 

MgCl2ᐧ6H2O, 10g CaCl2ᐧ2H2O, 50g KCl in 1L Water), a stock of 0.5M NH4Cl to act as a nitrogen 

source, a stock of 1M Na2SO4 to act as a sulfur source, and a stock of 100 mM KH2PO4 at pH 

7.2 to act as a phosphorous source. To create 1L of carbon-limited media, 10 mL of freshwater 

base, 10 mL of the nitrogen source, 250 uL of the sulfur source, and 1 mL of the phosphorous 

source were combined with one 10 mL vial of Trace Mineral Supplement (ATCC MD-TMS) and 

added to MilliQ water to a total volume of 1L. The resulting mixture was then filter-sterilized. 

 

For active growth conditions, commercial M9CA minimal media (Teknova M8010) was used, 

which contains 1% glucose, 0.1% casamino acids, 0.5 ug/mL thiamine, 0.2 mM magnesium 

sulfate, and 0.1 mM calcium chloride at pH 7.0.  

Strain growth and induction conditions 

Glycerol stocks of engineered strains were streaked onto LB agar plates with appropriate 

selection markers and grown overnight at 37C. One colony from each strain was then picked 

and inoculated into 3mL M9CA media with antibiotic selection (25 ug/mL kanamycin and 17 

ug/mL chloramphenicol) and grown for 24h in a 15 mL tube in a shaking incubator at 30C and 

250rpm to generate a stationary phase culture. The optical density (OD600) values of the 

resulting cultures were then measured with a spectrophotometer. For each strain, fresh batches 

of M9CA media with selective antibiotics were prepared in 96-well deep-well culture plates 

(NEST prod. no. 502062) with 12 500 uL wells per strain. 11 of these wells were used to titrate 

anhydrotetracycline (atc; Sigma-Aldrich cat. no. 37919) concentrations to induce PTet-driven 

expression of the repressor at concentrations spanning 0 to 200 ng/mL (see Supplemental 

Figures 1-24 for specific concentrations used for each experimental condition). Overnight 

cultures were diluted 1:10,000 into these wells and returned to the shaking incubator covered 

with a Breathe-Easier Sealing Film (Diversified Biotech BERM-2000). 

 

Meanwhile, 1 mL of the overnight cultures for each strain were transferred into 1.5mL Eppendorf 

tubes and spun down at 1,377 g on a tabletop centrifuge for 10 minutes. The supernatant was 

removed and resuspended in 1 mL of carbon-limited media, and the spin procedure was 

repeated. The supernatant was again removed and replaced with 1 mL of carbon-limited media. 

The resulting solutions were then re-diluted into 7 mL of carbon-limited media to bring the final 
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density of each culture to an OD600 of 0.0025. The dilute cultures were then split into twelve 

200 uL aliquots per strain in 96-well polystyrene microplates (Corning prod. no. 3370), and 11 of 

these wells were induced with varying concentrations of atc. The plates were then covered with 

the provided plastic lid and placed into the shaking incubator under the same conditions as 

above. Antibiotics were not added to the carbon-limited media to avoid adding potential 

additional stressors to the cells. 

 

All cultures were grown for 24 hours, after which 1 mM IPTG (Sigma-Aldrich cat. no. 420322) 

was added to the 11 atc-induced wells and the cultures were returned to the shaking incubator 

to continue growing for an additional 24 hours. Throughout this whole period, the M9CA cultures 

were diluted 1:1000 every 12 hours by transferring 0.5 uL media from each well into 500 uL of 

fresh media that contained the appropriate antibiotic and inducer concentrations for each 

condition. 

 

24 hours after the IPTG induction, the M9CA cultures were transferred into 96-well flow 

cytometry plates via a 1:400 dilution into 200 uL of fresh M9CA media, and all cultures were 

measured via flow cytometry. 

Flow cytometry 

Cells were measured on a Cytoflex S flow cytometer. Forward and Side Scatter thresholds to 

detect bacteria, as opposed to spurious debris or instrument noise, were determined manually 

based on comparisons to readings from samples containing only media. sfGFP expression was 

measured using 488 nm excitation and a 525/40 nm bandpass filter, while mScarlet3 expression 

was measured using 561 nm excitation and 610/20 nm bandpass filter. At the beginning of each 

measurement session, calibration beads (Spherotech RCP-30-5A) were measured to allow 

conversion of arbitrary fluorescent units into absolute fluorescence units (Molecules of 

Equivalent Fluorescein (MEFL) for sfGFP and Molecules of Equivalent PE-TexasRed (MEPETR) 

for mScarlet3) by fitting to an 8-point standard curve. M9CA cultures were measured until 

50,000 putative bacterial events were observed, while carbon-limited cultures were measured 

for 1 minute at the maximal standard flow rate of 60 uL/min, which typically yielded 5-10,000 

putative bacterial events per sample. 
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Analysis of flow cytometry data 

Flow cytometry data were analyzed using the Python package FlowCal (17). Fluorescence 

values were converted into absolute units using the appropriate bead data from each run using 

FlowCal’s built-in calibration functions. We then performed density gating on each set of 

measurements to keep only the events that were in the densest region of the forward scatter / 

side scatter plot in order to better exclude non-singlet events from our analysis. We used a 

density threshold of 0.4, meaning we discarded 60% of the measured events from each sample. 

Noise analysis and determination of non-unimodality 

In order to compare the distributions of sfGFP fluorescence values from each sample across 

different conditions, we performed the following normalization procedure. For a given sample, 

we extracted the measured GFP values, log-transformed them, and divided each resulting value 

by the median of this distribution. We then generated a kernel density estimate (KDE) from 

these values using the scipy.stats.gaussian_kde() function (18) with default parameters and 

then standardized the height of the KDE by normalizing it to a height of 1. This procedure 

allowed us to overlay all GFP distributions from all conditions on top of each other to analyze 

the shape and width of the distributions. Distribution widths were calculated by finding the first 

and last points at which the KDE intersects a value of 0.2, and dividing these points to obtain 

the width of this distance in logarithmic space.  

 

Distributions were classified as ‘notably non-unimodal’ if their derivative was negative at any 

point below the median (which is rescaled to be one). Buffer values of 0.1 below the median and 

0.005 below zero for the derivatives were applied to accommodate noise in the data. 

Bayesian Parameter Estimation 

Markov Chain Monte Carlo (MCMC) was implemented using the Python package emcee (19). 

Priors for each of the parameters in the Hill repression function (Eq. 1) were set as lognormal 

distributions with scale and shape parameters , , , , µ
α
= 𝑦

𝑙𝑜𝑤
σ
α
= 1 µ

β
= 𝑦

ℎ𝑖𝑔ℎ
− 𝑦

𝑙𝑜𝑤
σ
β
= 0. 5

, , , , where yhigh is the geometric mean of the median µ
𝐾
= 0. 1 σ

𝐾
= 1 µ

𝑛
= 1 σ

𝑛
= 0. 5

unrepressed GFP values from each replicate and ylow is the geometric mean of the median 

maximally-repressed GFP values from each replicate. Median (RFP,GFP) fluorescence values 

from each measured sample were extracted and the values from all induction conditions and 
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replicates were pooled together for each gate to generate 11*3=33 data points along the 

repression curve for each gate. MCMC was run with 32 walkers for 10,000 iterations fitting the 

data against the Hill repression function. Autocorrelation analysis was used to assess 

convergence by confirming that the maximal autocorrelation value 𝜏max was less than the 

number of iterations divided by 50. 

Results 

Design of general NOT gate architecture for measurement in growth arrest 
Although we do not know a priori exactly how growth arrest will affect the behavior of 

engineered NOT gates, our general understanding of microbial growth arrest suggests that our 

assay will need to be sensitive enough to detect low levels of gene expression and be able to 

capture cell-to-cell variability in repression. Both of these points require modifications to the 

conventional procedures used in the field to measure repression curves. Typically, repression 

curves are measured by driving the expression of a fluorescent protein from a repressible 

promoter and expressing its cognate repressor from a separate inducible promoter (Fig. 2a). By 

adding different concentrations of inducer in separate experiments, one generates different 

concentrations of repressor that lead to different expression levels of the output fluorescent 

protein. 
 
Importantly, because the repressible promoter is unrepressed prior to the start of the 

experiment, one must wait for any output protein produced prior to repressor induction to be 

removed from the cell in order to accurately measure the expression level from the promoter in 

its repressed state (Fig. 2b). This removal relies on either active degradation or dilution of the 

output protein through cell division, both of which pose challenges for measurements taken in 

growth arrest. One cannot rely on dilution to remove the initial output proteins, because cells 

rarely divide under nutrient starvation. Meanwhile, applying active degradation to the output 

protein decreases its concentration associated with a particular level of promoter activity. As 

global gene expression levels are already predicted to be much lower under growth arrest (7), 

decreasing the signal strength in this way is undesirable. 

 

We resolved these challenges by choosing to base our NOT gates around repression of the T7 

promoter (Fig. 2c). Because the T7 promoter does not exhibit cross-activation from E. coli’s 

native RNA polymerase, it remains inactive until its cognate RNA polymerase (T7 RNAP) is 
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expressed. As such, we can perform a two step procedure where we first induce the repressor, 

and afterwards induce the T7 RNAP in order to activate expression from the T7 promoter. This 

ensures that all observed output proteins were expressed when the promoter was under a 

repressed regime (Fig. 2d). 

 
Fig. 2: Design of NOT gates compatible with growth arrest measurements. (a) Schematic of the 
conventional procedure for measuring repression curves. The repressor (Rep) is expressed from an 
inducible promoter (Pind) to repress the expression of a fluorescent protein (GFP) from the repressible 
promoter (Prep). In a separate experiment, Pind is used to express another fluorescent protein (RFP) to 
determine the expression level associated with a particular inducer concentration. This data is used to 
infer the repressor concentration in the first experiment, yielding a repression curve. (b) In the gate 
architecture in (a), GFP expression starts high in all conditions because Prep is active in the absence of 
repressor. The experimenter must wait for GFP levels to fall to their repressed level over time via dilution 
by cell division or active degradation. (c) Design of the T7-based NOT gate used in this work. The 
repressor of the T7 promoter PT7 is fused to RFP, so single-cell measurements of both repressor and GFP 
levels can be made simultaneously. (d) For the gate architecture in (c), the GFP levels remain low until T7 
RNAP is induced, ensuring that all observed GFP was expressed when PT7 was in a repressed regime. 
(e) Representation of dCas9 binding footprints for the 12 designed NOT gates. PAM sequences are 
bolded and the +1 transcriptional start site is underlined and marked with a star. 
 

Another challenge with applying conventional repression curve measurement techniques to 

growth arrest conditions is that the conventional approach does not measure the concentration 
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of repressor directly. Instead, the repressor concentration is assumed to be equivalent to that of 

a separate fluorescent protein expressed from that same promoter under the same conditions, 

in a separate experiment (Fig. 2a). This approach does not allow us to measure cell-to-cell 

variability in repression because one cannot quantify the repressor concentration against the 

output protein concentration within the same cell. 

 

We resolved this challenge by choosing to fuse our repressor to an orthogonal fluorescent 

protein, allowing direct single-cell measurements of repressor concentration alongside output 

protein concentration (Fig. 2c). Furthermore, in order not to conflate the effects of cell-cell 

variability on gene expression with those from within-cell variability in plasmid-borne circuit copy 

number, we chose to integrate the entire system onto the E. coli genome. 

Design of NOT gate library 
Having created a general gate architecture in which fluorescent protein-fused repressors target 

the T7 promoter, we next needed to choose the specific set of gates to test. Existing 

repression-based circuits have typically been constructed either from libraries of 

genomically-mined transcription factors (20) or from dCas9 (21). Transcription factors exhibit a 

large diversity among various properties that affect repression, such as the protein’s size and its 

tendency for multimerization. They also vary in their actual mechanism of repression, including 

for example DNA looping, steric hinderance, or even stabilization of host RNA polymerases (22, 

23). This means that if two gates driven by different repressors behave differently under growth 

arrest, it will be difficult to disentangle which molecular factors led to these different responses.  

 

We therefore chose to use dCas9-based repression as the basis for our NOT gate library, so 

that all of the gates share the same repressor protein and vary only in where it binds. It is known 

that dCas9 can repress by inhibiting either transcriptional activation or elongation based on its 

binding position, and that in the latter case the binding orientation has a large impact on 

repression strength (24). Although to our knowledge there has been no systematic investigation 

of how dCas9 binding location affects the general properties of the repression curve as a whole, 

we reasoned that the existing evidence nonetheless suggests that varying dCas9 binding 

position should create a library of NOT gates with diverse repression curve profiles. 

 

We designed a construct expressing a sfGFP gene from the T7 promoter, incorporating the 

RiboJ ribozyme to serve as a genetic insulator by standardizing the 5’ untranslated region of the 
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mRNA (25). We identified 12 PAM sites on both strands spanning 30bp upstream to 160bp 

downstream of the transcriptional start site and constructed gRNAs to target dCas9 to these 

positions, generating a library of 12 different NOT gates (Fig. 2e). We label each gate as D{T/C}
N, 

where the superscript indicates whether dCas9 binds to the Template or Coding strand and the 

subscript N indicates the location of the midpoint of the predicted 33bp dCas9 binding footprint 

with respect to the transcription start site (26). We also created a 13th gate with an off-target 

gRNA, D0, as a negative control. 

 

Because measuring the repressor concentration is a critical part of our assay, we fused dCas9 

to a red fluorescent protein (mScarlet3) and expressed it from an inducible promoter (PTet), while 

each gRNA was expressed from a strong constitutive promoter (POR1OR2) to ensure that it is in 

stoichiometric excess. While dCas9-based NOT gates typically express dCas9 constitutively 

and titrate the concentration of gRNA, these two approaches are functionally equivalent in that 

they both lead to the titration of the amount of active repressor (the dCas9:gRNA complex). The 

T7 RNAP was separately expressed from an orthogonal inducible promoter (PLacO). Both inducer 

molecules, atc and IPTG, are not metabolized by E. coli, ensuring that cells remain in growth 

arrest even upon addition of inducer. 

Design and validation of measurement assay 
Studies in the literature utilize a number of different approaches to induce growth arrest, which 

can have different implications for the resulting physiological response. We chose to follow the 

general approach used by Bergkessel and Delavaine, which allows a culture of cells to naturally 

reach stationary phase before washing and diluting them into carbon-limited media (27). This 

approach simulates the gradual entry into starvation that is likely more representative of natural 

environments while also avoiding potential confounding effects from the high densities 

associated with stationary phase cultures. 

 

We then set out to design a measurement procedure that allows the behavior of a genetic circuit 

in the same population of cells to be compared under two different growth conditions. While 

synthetic biologists often measure the performance of their circuits in both exponential phase 

and stationary phase to assess robustness across growth phases, this is typically done by 

activating the circuit in exponential phase, measuring its output, and then waiting until that same 

population reaches stationary phase and then re-measuring the output (15, 20). This approach 

captures how the circuit’s performance persists over time but does not capture its intrinsic 
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behavior under growth arrest, as the circuit is not activated during growth arrest specifically, and 

outputs from its prior activation during exponential phase could carry over into stationary phase. 
 

 
Fig. 3: Measurement of NOT gate repression curves under active growth and growth arrest. (a) 
Schematic representation of measurement assay. (b) Representative example of a repression curve in 
both active growth and growth arrest. (c) Representative example of the negative control circuit driven by 
an off-target gRNA. Points in (b,c) are colored according to the atc concentration, with grey points from 
the condition where no IPTG was added. Circles represent the median GFP,RFP values for each 
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condition. RFP values are plotted on a symmetric log scale (28) where the grey shaded region is linear. 
Full plots of each of 3 replicates for each gate are in Supplemental Figures 1a-13a. (d) Median GFP 
values across all gates at selected induction conditions. IPTG –/+ corresponds to 0 or 1 mM induction of 
T7 RNAP and atc –/+ corresponds to 0 or maximal (200 ng/mL for active growth, 20 ng/mL for growth 
arrest) induction of repressor. (e) Kernel density estimates (KDEs) of log-transformed GFP values across 
all experimental conditions where T7 RNAP was induced, rescaled to the median of the distribution and 
normalized to a maximal value of 1. (f) Width of each KDE in (e), defined by the distance in logspace 
between the two points where the KDE crosses the value of 0.2. Bars show the geometric mean. 
 
We therefore designed a measurement procedure that can independently measure a circuit’s 

behavior under both growth arrest and active growth (Fig. 3a, Methods). An overnight culture of 

cells engineered with the NOT gate is split into 24 different cultures, half of which are washed 

and diluted into carbon-limited media alongside the addition of 11 different concentrations of atc 

to induce dCas9 expression to various levels. 24h later, 1 mM IPTG is added to 11 of the 

cultures to induce T7 RNAP expression, with the 12th culture remaining as an uninduced 

negative control. The same induction procedure is applied to the other 12 cultures from the 

initial split, except these are repeatedly diluted into fresh batches of the original growth media to 

ensure the cells remain actively growing. 24h after the T7 RNAP induction, all cultures are 

measured for mScarlet3 and sfGFP expression via flow cytometry. 

 

Our assay was able to measure repression behavior in both active growth and growth arrest for 

the NOT gates in our library, with dCas9 concentrations spanning a wide range of values (from 0 

to ~100 MEPETR in active growth and to ~10 MEPETR in growth arrest) and driving a decrease 

in GFP levels (Fig. 3b,  Supplemental Fig. 1a-12a). The off-target gate D0 did not show a 

decrease in GFP associated with increasing dCas9 concentration (Fig. 3c, Supplemental Fig. 

13a), indicating that observed decreases in GFP level are indeed due to the impact of active 

repression by dCas9. 

 

We also saw that the unrepressed GFP level was similar across all gates within a growth 

condition, suggesting that leaky expression of dCas9 in the absence of induction was not a 

notable issue (Fig. 3d). Additionally, we saw a clear separation in GFP values between 

conditions where T7 RNAP was induced or uninduced in the absence of repressor across all 

gates, suggesting that leaky expression of T7 RNAP was also not an issue (p < 10-6 for both 

growth conditions, paired t test). However, the overall dynamic range of PT7 activation under 

growth arrest (3.75-fold) was significantly lower than in active growth (3000-fold). This reduction 

in dynamic range was primarily due to growth arrest imposing a large reduction in PT7’s ON state 

(geometric mean of 300,000 MEFL to 1,000 MEFL), as compared with the smaller increase in 
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PT7’s OFF state (geometric mean of 100 MEFL to 275 MEFL) (Fig. 3d). Overall, these results 

showed that our assay is able to reliably measure repression curves from our NOT gate library 

in both active growth and growth arrest. 

Gene expression noise in NOT gate outputs increases moderately under growth arrest 

We next investigated how growth arrest impacted the level of noise in the NOT gates’ output. 

We plotted kernel density estimates of the GFP values from every experimental condition where 

T7 RNAP was induced and rescaled them to their median value to overlay them against each 

other (Fig. 3e). GFP distributions in active growth were dominated by a tight peak around the 

median, as expected. GFP distributions in growth arrest, however, tended to be wider and 24% 

of them exhibited notable non-unimodality, compared to none in active growth (Methods). 

Calculating the width of the rescaled distributions found that growth arrest increased the 

average distribution width by 1.8-fold (Fig. 3f). These results show that growth arrest applies a 

consistent but moderate increase in the noise of NOT gate outputs. 

dCas9 binding location affects repression curve properties during active growth 
We next analyzed our data to determine whether our library of NOT gates, in which gates differ 

from each other based on the binding location of dCas9, indeed generated a diversity of 

repression curves as predicted. Although prior work has shown that dCas9 binding location 

affects the extent of overall repression (24, 29, 30), to our knowledge our dataset is the first to 

measure full repression curves for different dCas9 binding locations. In order to extract the 

parameters of the repression curve from our measurements, we performed Bayesian Parameter 

Estimation on the data from each gate to obtain a distribution of values for each of the four 

parameters in the Hill repression function (Eq. 1) for each growth condition (Fig. 4a).  

 

We first checked whether, under active growth conditions, the observed fold repression (𝛽+𝛼)/𝛼 

followed the trends expected from existing literature (Fig. 4b, left). Gates where dCas9 bound 

upstream of the T7 promoter exhibited low levels of repression, while gates where dCas9 bound 

on or immediately downstream of the promoter showed strong repression (up to a maximum of 

116-fold from Gate DT
25). In contrast, binding positions further downstream showed very low 

levels of repression, with only Gate DC
160 repressing at a similar level to the upstream-binding 

gates. This stronger repression from Gate DC
160 is consistent with previous observations that 

dCas9 blocks transcriptional elongation more strongly when bound to the complement strand 
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(24). Interestingly, Gate DT
43 exhibited no detectable repression, despite binding only 18bp 

downstream, and on the same strand, from the most repressive gate DT
25 (Supplemental Fig. 7).  

 
Fig. 4: Repression curve behavior of dCas9 NOT gate library. (a) Schematic of the Bayesian Parameter 
Estimation (BPE) procedure for obtaining distributions of parameter values. Median (GFP,RFP) values 
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from each induction condition are pooled across replicates to generate a master repression curve, to 
which the Hill Repression function (Eq. 1) is fit using Markov Chain Monte Carlo (MCMC)-based BPE. Full 
plots of each NOT gate in each growth condition are given in Supplemental Figs. 1b-13b. (b) Posterior 
parameter distributions for fold repression (𝛽+𝛼)/𝛼 , K, and n for each NOT gate in active growth and 
growth arrest, derived from three biological replicates measured on three different days. Dots represent 
medians, and each distribution is scaled to a constant width that marks the size of the dCas9 binding 
footprint on the genome. The location of the T7 promoter sequence is marked by the green shaded 
region. (c) Shifts in median parameter values from active growth to growth arrest for all repression curve 
parameters for all NOT gates, plotted against genomic location as in (b). The 𝛽 shift is ommitted for gates 
with no repression in a growth condition as 𝛽 = 0 when the fold repression is 1.   
 

Overall, our results suggest that dCas9 is a better repressor when blocking transcriptional 

activation than elongation, which goes against the results of prior work on native E. coli 

promoters (24, 29) but is consistent with prior results on the T7 promoter (30). Our data 

therefore further support the notion that dCas9’s interactions with the T7 RNAP may differ 

significantly from those with E. coli’s native RNAP. 

 

Both the Hill coefficient n and the sensitivity K were fairly consistent across gates, with median n 

values ranging between 1.2 and 2.1 and median K values spanning a 2.6-fold range across the 

gates. Gates where the repressor blocked transcriptional elongation had a slightly lower 

sensitivity (i.e., higher K) to repressor concentration (Fig. 4b, left middle panel). The robustness 

of the Hill coefficient n to changes in binding position is expected, as n is thought to be a 

protein-intrinsic property. The fact that K values are higher for more downstream-binding gates, 

however, suggests that dCas9 may require higher concentrations to repress the T7 promoter via 

blocking transcriptional elongation than via blocking transcriptional activation. 

Impact of growth arrest on repression curve properties 

We next characterized repression curves properties for these same gates under growth arrest to 

understand how these properties vary between the two growth conditions (Fig. 4b, right). 

Overall, repression values were much lower under growth arrest, reaching 6.6-fold repression at 

maximum. This is likely due in large part to the reduction in the overall possible dynamic range 

for the gates under growth arrest due to the decrease in PT7’s ON level (Fig. 3d). 

Position-dependent effects on repression strength were also homogenized under growth arrest, 

with upstream-binding and elongation-blocking gates able to reach similar levels of repression 

to the gates where dCas9 bound on or immediately downstream of the T7 promoter. Values of K 

and n also became more similar between gates under growth arrest, with median K values now 

spanning only a 1.4-fold range and median n values lying between 1.2 and 1.3. 
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Interestingly, Gate DT
43 exhibited slight but detectable repression (1.7-fold) in growth arrest 

despite exhibiting no detectable repression in active growth (Fig. 4b, Supplemental Fig. 7). This 

result hints at the possibility that growth arrest, even though it decreases the level of maximal 

achievable repression, may impose physiological changes that broaden the capacity to repress 

across different repression schemes. One way in which this might occur is that differences in 

nucleoid organization between growth phases (31) could cause short-range DNA interactions 

that pervent dCas9 binding to the +43 position, present during active growth, to be weakened 

under growth arrest. 

 

Further analyzing the changes in repression curve properties at the individual gate level, we 

found that all gates exhibited a significant drop in overall expression level, with 𝛽 and 𝛼 

decreasing by a geometric mean of 321 and 99-fold, respectively (Fig. 4c). Depending on 

whether 𝛼 decreased more, or less, than 𝛽, however, this led to either an increase or decrease 

in the overall repression strength, with the six gates binding closest to the promoter 

experiencing a reduction in repression strength (geometric mean of 7.9-fold reduction) and the 

remaining six gates experiencing a minimal changes that averaged to a slight increase in 

repression strength (geometric mean of 1.3-fold increase). Changes to K and n were minimal 

across all gates, with no gate shifting these parameters more than 2.2-fold (geometric mean 

increase in median K and n was 1.3 and 1.2-fold, respectively). 

 

These results, taken together, suggest that the impact of growth arrest on repression curves is 

almost entirely dominated by a drop in overall expression level captured by the decreases in 𝛽 

and 𝛼, with a moderate increase in gene expression noise and minimal changes to the 

sensitivity and sharpness of the curve. 

Generalization of results to other repressors 

We next asked whether the previous conclusions were specific to dCas9-mediated repression or 

whether they might generalize to NOT gates based on other repressors. To investigate this 

question, we turned to a previously-published system where dCas9 is mutated to reduce its 

native capacity for DNA binding (generating dCas9*) and then fused to the TetR-family 

transcriptional repressor PhlF (32). The resulting protein requires both a PhlF operator site 

(PhlO) and a PAM-targeting gRNA in order to bind to the DNA, and acts as an intermediate 

condition between dCas9-mediated repression and PhlF-mediated repression. 
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Fig. 5: Measurement of repression curves from NOT gates driven by alternative repressors. (a) 
Schematic of repressed constructs. Genetic sequences are colored as in Fig. 1e, with the PhlO site 
added in green. The +1 transcriptional start site is bolded and underlined and marked with a hooked 
arrow, and PAM sequences are bolded. Each of the six repressible constructs generates two different 
NOT gates depending on whether it is repressed by the dCas9:PhlF fusion or by PhlF alone. (b) Posterior 
distributions for repression curve parameters in active growth and growth arrest for the dCas9:PhlF and 
PhlF NOT gates, derived from 3 biological replicates measured on 3 different days. Full repression curve 
measurements and MCMC outputs are shown in Supplemental Figs. 14-24. Distribution widths are scaled 
to a constant value that indicates the width of the repressor’s genetic footprint. The location of the T7 
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promoter sequence is indicated by the green shaded region. Dots represent the median of the 
distribution. (c) Shifts in median parameter values from active growth to growth arrest for all repression 
curve parameters for all gates, plotted against genomic location as in (b). The same parameters are 
plotted across graphs within a row. The 𝛽 shift is ommitted for gates with no repression in a growth 
condition as 𝛽 = 0 when the fold repression is 1. (d) Rescaled and normalized kernel density estimates 
(KDEs) of GFP values across all induced conditions (left), and widths of these KDEs defined by the width 
of the crossing at a value of 0.2 (right). Bars represent the geometric mean. 
 
We identified 3 candidate positions where a PhlO sequence could be inserted in the regulatory 

region of our design (before the promoter, before RiboJ, and before the ribosome binding site) 

near a PAM site, and inserted the PhlO sequences in both possible orientations to create a set 

of 6 repressible constructs. We added spacer sequences as necessary to implement the 

previously-determined optimal 12bp spacing between the PhlO site and the PAM site (32) to 

ensure that these constructs could be repressed by either the dCas9*:PhlF fusion or by PhlF 

alone, thus creating a new set of 12 NOT gates (Fig. 5a). We label the fusion and PhlF gates as 

F{T/C}
N and P{T/C}

N, respectively, following the previous convention. For P gates, N indicates the 

position of the midpoint of the PhlO site, while for F gates, N indicates the midpoint of the 66bp 

window that spans the dCas9 footprint and the PhlO site. 

 

We fused mScarlet3 to the C-terminus of dCas9*:PhlF and PhlF and measured their repression 

curves using the same methodology as was previously applied to the dCas9 gates. Data from 

Gate FC
-34 was thrown out after later investigation revealed that the gRNA was assembled 

incorrectly, leaving repression curve data for 11 additional NOT gates.  
 
We first assessed whether these new sets of gates followed the same trends relating the 

repressor binding location to properties of the repression curve as was observed for the dCas9 

gates under active growth (Fig. 5b). In both sets of gates, repression was strongest when the 

repressor bound immediately downstream of the +1 site (15-fold repression for Gate FT
12, 

865-fold repression for Gate PT
18), although in the fusion gate library, the gate that bound 

upstream of the T7 promoter (Gate FT
-50) exhibited comparable levels of repression. We note 

that in our hands, dCas9*:PhlF achieved lower levels of repression than were originally reported 

(15-fold maximum versus ~50-fold repression in ref. 32). This discrepancy may be due to the 

fact that we used a full-length dCas9* protein in our fusion to keep the repressor identity more 

similar to our previous dCas9 gates, while the original study replaced dCas9’s HNH domain with 

a GGGSx2 linker. 
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The sensitivity, K, varied across only a 1.6- and 2.1-fold range for the fusion and PhlF gates, 

while the Hill coefficient n only ranged between 1.2 and 1.4 for the fusion gates and 1.3 and 2.1 

for the PhlF gates. Overall, we concluded that the general relationship between repressor 

binding location and NOT gate behavior was similar in these gates as it was for the 

dCas9-based gates. 

 

We then assessed whether the repression curves from these gates also shifted in response to 

growth arrest in a similar way to the dCas9 gates (Fig. 5c). As before, both the fusion and PhlF 

gates experienced a large decrease in overall expression levels, with median 𝛽 values 

decreasing by a geometric mean of 149 and 253-fold and median 𝛼 values decreasing by a 

geometric mean of 46 and 8.7-fold for the fusion and PhlF gates, respectively. K and n, as 

during active growth, exhibited minimal changes during growth arrest, with median K values 

increasing 1.1 and 1.3-fold and median n values increasing 1.0- and 1.2-fold across the fusion 

and PhlF gates, respectively. Interestingly, none of the tested gates exhibited notable 

multimodality in either growth condition, although the average widths of the GFP distributions 

under growth arrest were still wider than under active growth for both sets of gates, by 1.4-fold 

(Fig. 5d). 

 

Taken together, these trends are broadly consistent with those that we observed in the 

dCas9-based NOT gate library, suggesting that the impacts of growth arrest on repression 

curves observed in this work may generalize to other repressors with different molecular 

implementations. 

Discussion 
We have presented a systematic characterization of engineered genetic circuit components that 

directly compares their performance in active growth and growth arrest conditions. Doing so 

required the development of specialized NOT gate architectures and novel measurement 

approaches to quantitatively characterize repression curves in a way that is compatible with low 

gene expression levels and cell-to-cell variability. After measuring the performance of 23 

different NOT gates based on three different repressors, we find that the impact of growth arrest 

on repression curves is dominated by a single effect, the significant decrease in output 

expression levels by two orders of magnitude. All other curve parameters, meanwhile, either 
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experienced minor changes (such as the moderate increase in gene expression noise) or were 

unaffected (as were the sensitivity and sharpness of the curves). 

 

Because the decrease in expression strength tended to occur asymmetrically, with unrepressed 

expression levels (driven by 𝛽) decreasing more than fully-repressed expression levels (driven 

by 𝛼), most NOT gates experienced a decrease in repression strength under growth arrest. 

However, in several cases, we found that individual gates were able to maintain similar 

performance measures between the two growth conditions. For example, even though Gate 

DC
-23 experienced a 309-fold reduction in 𝛽 and a 146-fold reduction in 𝛼, its overall fold change 

only decreased by 1.3-fold (going from 8.5-fold repression in active growth to 6.3-fold repression 

under growth arrest) while its sensitivity and sharpness experienced similarly small changes 

(1.3-fold and 1.2-fold increases in K and n) (Fig. 4b,c). This means that the repression curve 

almost completely preserved its shape and simply shifted downwards on the input/output plot as 

a consequence of growth arrest. 
 
What are the implications of these results for the engineering of larger, more complex genetic 

circuits that can function under growth arrest? Recall that repression-based circuits require their 

component repression curves to align, which means that the sensitivity of the downstream 

repressor must lie within the dynamic range of the upstream repressor (𝛼1 < K2 < 𝛽1+𝛼1). 

Because we observed that K values change minimally while 𝛽 and 𝛼 values can decrease 

significantly under growth arrest, circuit failure occurs when the 𝛽 value of the upstream circuit 

drops below the value of K for the downstream circuit. We illustrate this in Fig. 6 with a 

NOT-NOT circuit composed from the two strongest repressors from a library of 73 

genomically-mined repressors (20). We can see that the reduction in expression level is strong 

enough to fully negate the predicted responsiveness of the circuit under growth arrest. 
 
Despite this conclusion, however, it is nonetheless the case that genetic circuits with nontrivial 

complexity have been validated to function in natural environments where growth arrest is 

expected to occur, like the gut or the soil (33–35). Our results provide a possible explanation for 

this discrepancy. In an OFF-to-ON circuit like the NOT-NOT circuit described above, the 

misalignment of the repression curves under growth arrest leads to an always-ON behavior in 

the full circuit. However, because the level of the ON state under growth arrest is over 100 fold 

lower than it is in active growth, this state is functionally indistinguishable from an OFF state in 

active growth. This serendipitous alignment of effects means that growth-arrested cells would 

appear as false negatives for circuit function, and not impede the measured signal from the 
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subset of cells in the population that are actively growing and exhibiting proper circuit function. 

Indeed, single-cell measurements of genetic circuit performance in natural environments have 

shown a high proportion of non-responsive cells even when genetic analyses confirm that they 

contain the circuit (36). 

 

 
Fig. 6: Illustration of the predicted impacts of growth arrest on circuit function. Predicted performance of a 
NOT-NOT circuit built from the TetR family repressors SrpR and PhlF. Although the circuit is in an 
always-ON failure mode under growth arrest, the decrease in overall expression levels means that its 
performance is nearly identical to that of an always-OFF failure mode in active growth. Repression curve 
parameters for active growth were obtained from ref. (20), and growth arrest curves were generated by 
scaling the active growth 𝛽 and 𝛼 values by 1/300 and 1/150, respectively, following the behavior of Gate 
DC

-23. All values are in Relative Expression Units (REUs).  
 

The conclusion from these results is that a circuit consisting of only a single NOT gate can 

indeed function under growth arrest, sometimes exhibiting very similar performance between 

active growth and growth arrest, provided that the measurement devices are calibrated to 

capture outputs with ~100-fold lower signal values. However, the fact that the sensitivity of 

genetic components do not scale alongside the expression levels means that circuits consisting 

of layered gates will not, as a rule, function properly under growth arrest. Therefore, in 

applications where cells must consistently perform circuit computations specifically under growth 

arrested conditions, such as in long-term biomonitoring or in embedded structural materials, 

new genetic design paradigms will be required. 

 

One possible approach would be to extend the expected timescale of circuit function, so that 

output proteins from each circuit layer are given a longer time to accumulate. A previous study 
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has shown that exogenously-induced proteins can accumulate linearly in stationary phase E. 

coli cells over a period of at least 24 hours (37). If this effect persists over multiple days, then 

enough protein might accumulate to mitigate the reduction in 𝛽, allowing gates to be wired 

together and retain their expected performance even under growth arrest. In the NOT-NOT 

circuit proposed above, for example, mitigating the reduction in expression level by only 8-fold 

(bringing the growth arrest-associated reductions in 𝛽 and 𝛼 to 38-fold and 19-fold, respectively) 

would allow the overall circuit to exhibit a 10-fold response range under growth arrest 

(Supplemental Fig. 25). Under such a scheme, however, new strategies to resolve the 

challenges associated with circuit computation over weeklong timescales would need to be 

developed, like solutions for increased leak and alternative mechanisms of protein removal. 

 

Synthetic biology holds great promise for transforming the physical world in ways that can 

advance both human and ecological welfare, but doing so will require the development of new 

sets of design principles to allow the safe and reliable performance of engineered biosolutions 

into real-world environments. This work takes a first step towards this goal by characterizing the 

impacts of microbial growth arrest on genetic circuit behavior to reveal which performance 

parameters are most affected, revealing new avenues for future research to address these 

challenges. 
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