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Abstract

Much of the progress in developing our ability to successfully design genetic circuits with predictable
dynamics has followed the strategy of molding biological systems to fit into conceptual frameworks used in other
disciplines, most notably the engineering sciences. Because biological systems have fundamental differences
from systems in these other disciplines, this approach is challenging and the insights obtained from such analyses
are often not framed in a biologically-intuitive way. Here, we present a new theoretical framework for analyzing
the dynamics of genetic circuits that is tailored towards the unique properties associated with biological systems
and experiments. Our framework approximates a complex circuit as a set of simpler circuits, which the system
can transition between by saturating its various internal components. These approximations are connected to the
intrinsic structure of the system, so this representation allows the analysis of dynamics which emerge solely
from the system’s structure. Using our framework, we analyze the presence of structural bistability in a leaky
autoactivation motif and the presence of structural oscillations in the Repressilator.
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2 A geometric and structural approach to the analysis and design of biological circuit dynamics

1 Introduction
Since even before the dawn of synthetic biology twenty years ago, there has been much interest in the study of
designing biological systems with desired dynamical behaviors. Such a pursuit requires the development of a
theoretical framework that can capture the fundamental relationship between a system’s structure and its ultimate
functionality, so that desired behaviors can be engineered into the system with predictable and reliable results.
There has been a rich tradition of applying conceptual frameworks from a variety of fields to the study of biological
systems, ranging from physics, mathematics, engineering, computer science, and even economics, for fruitful
gain. However, applying such extra-disciplinary frameworks to biology always comes with the added challenge
of needing to mold the biological system under study to fit the assumptions nascent in systems from the other
discipline. Because biological systems have different intrinsic properties and challenges than, say, systems in
computer architecture, a theoretical framework developed to address the strengths and disadvantages of the latter
will not be able to analyze a biological system optimally.

This creates an issue where, in order to best make use of conceptual frameworks from other disciplines like the
engineering sciences in designing biological circuits, one must first identify the intrinsic properties of biological
systems and then engineer or modify them to mitigate these properties so that they can better satisfy the
requirements for these conceptual frameworks. Much of the work in the past twenty years of synthetic biology has
focused on designing biological parts which minimize their biological properties (high cross-talk, probabilistic
behavior, emergent behaviors) and instead exhibit the properties required for traditional engineering frameworks
(modularity, orthogonality, programmed behaviors). This work has progressed both through the construction
of new biological parts [1, 2] as well as the extensive characterization of existing parts [3, 4], all with the goal of
making the behavior of biological systems more predictable. Although these efforts have led to great success
in designing systems like genetic logic gates [5], the disconnect between the nature of biological systems and
the requirements for applying engineering-based theory still persists strongly in the realm of dynamic circuit
behavior.

In this work we propose an alternative approach, where we develop a new conceptual framework tailored for
the specific needs of building genetic circuits out of biological parts. In addition to eliminating the need to mold
biological systems to mitigate their intrinsic properties, by framing the exploration and understanding of these
circuits in a more naturally biological language we may facilitate the discovery of previously-unseen insights into
the design principles of biological systems. To paraphrase a lesson from one of Jeremey Gunawardena’s great
perspective pieces on mathematical models, the language we use necessarily limits what we can discover and
understand [6].

Our framework capitalizes on two properties of biological systems. The first is the fact that many of the biomolecular
process that drive genetic circuits are enzymatic, and that therefore many of these properties are saturatable. By
this we mean that when a reaction’s substrate is at a sufficiently higher concentration than its enzyme or vice versa,
the reaction’s rate is well-approximated by a constant. The second property is that while the rates of biomolecular
reactions often vary with environmental conditions like temperature or pH, the stochiometry of these reactions
show comparatively little variation. We will use the stoichiometry of its constituent reactions to represent the
structure of a biomolecular process, and therefore claim that dynamics encoded into a system’s structure rather
than into the values of its rate constants will be more robust to such environmental variations.

The central insight of our framework is that a complex genetic circuit can be approximated by a set of simpler
circuits, where the system transitions between these approximations by saturating or unsaturating its various
components. We then find that the dynamics of the original system can be reproduced from analyzing the
transitions between these approximations. Because these dynamics emerge from saturations, the resulting insights
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A geometric and structural approach to the analysis and design of biological circuit dynamics 3

into the circuit’s dynamic behavior are phrased in the language of system saturations, which we claim is a more
biologically-natural language for describing these phenomenon. Furthermore, these approximations correspond
to different representations of the system’s structure, as defined above, so the dynamics that emerge from these
approximations are intrinsically encoded in the system’s structure alone, rather than relying on specific values of
rate constants. This ensures that such dynamics, which we term structural dynamics, will be robust to fluctuations
in system parameters that are not large enough to push the system into a new saturation state.

Although our framework is superficially quite similar to the Design Space Formalism framework developed my
Michael Savageau’s group [7, 8], there are important differences in both the analysis process and the intention
of our work that make it a distinct framework in its own right. Furthermore, our framework serves as part of a
larger theoretical foundation for models of biomolecular processes currently being developed by Xiao et al (in
preparation) [9].

In section 2 we will begin by introducing the core concepts of the analysis framework, including the idea of
partitioning a system’s dynamic behavior into structural regimes based on saturations. We will then walk through
the analysis procedure for a simple case study, using the leaky positive autoactivation motif as an example of
structural bistability. In section 3, we will illustrate the use of a geometric interpretation of the system’s structural
dynamics to gain further insights into the leaky positive autoactivation motif. In section 4, we will apply our
analysis framework to the Repressilator, to show how structural dynamics can explain the presence of oscillations.
Finally, we will conclude with a discussion of the framework’s applicability to the design of genetic circuits in
section 5.

Throughout this work, the more technical mathematical details will be given in appendices to facilitate a smoother
reading of this manuscript. Nonetheless, a familiarity with the use of Ordinary Differential Equation (ODE)
models to investigate the dynamics of genetic circuits will be helpful. Those seeking a more rigorous mathematical
treatment of this framework, or those who wish to gain a fuller understanding of the theory itself, should refer to
Xiao et al (in preparation) [9].

2 Preliminary Concepts
2.1 Introduction to saturation regimes and structural regimes
The core concept in the analysis of a system’s structural dynamics is the partitioning of a system’s state space into
“saturation regimes” to approximate the complex functions driving the system’s dynamics with simpler functions,
which we will term “structural regimes”. These saturation regimes are a generalization of the familiar notion of
saturation in biological dynamics. As an illustration, consider the standard Hill activation function, given by

Hill(x) = β xn

Kn + xn
. (1)

We can see that Hill(x) can be approximated by simpler functions depending on whether x is saturating the
expression:

when x� K, Hill(x) ≈ β x
n

Kn
=
β

Kn
xn,

when x� K, Hill(x) ≈ βx
n

xn
= β.

(2)

Note that each of the approximations for Hill(x) above are in monomial form, ie. they can be written as

f(x) = kxα = kxα1
1 xα2

2 . . . xαnn , (3)
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4 A geometric and structural approach to the analysis and design of biological circuit dynamics

where k is some rate constant, x is an n-dimensional vector of system variables, and α is an n-dimensional vector
of integers. In the case of Eq (2), when x� Kwe have k = β

Kn and α = n, while when x� Kwe have k = β and
α = 0.

We will say that a saturation regime is a window of values for the state variables x such that the functions of
interest can be approximated by monomial forms (Eq (3)). Furthermore, we note that these monomial forms have
a natural biological interpretation through the lens of mass-action kinetics. In this view, the αi terms represent
the stoichiometry of the species xi in the reaction, which corresponds to the structure of the mass-action system.
Because the monomial forms in each saturation regime differ in their αi terms, we can say that the structure of the
approximation changes in different saturation regimes. Therefore we will say that a function’s specific monomial
approximation in a given saturation regime is the associated structural regime.

Thus, in the case of the Hill activation function Hill(x), its saturation regimes are x � K and x � K, which
correspond to the structural regimes β

Knx
n and β, respectively. This is illustrated in Fig 1a,b.

Figure 1 An illustration of generalized saturation and its associated regimes, applied to (a,b) a Hill activation function
and (c,d) a linear addition function. The full functions are shown in red and their structural regimes are plotted in
black. The structural regimes are only valid approximations of the original function within particular windows of x,
which are the saturation regimes– these are schematically depicted by the boldness of the black lines. The dashed line
indicates the border separating the saturation regimes– for (a,b) the line separates x� K and x� K, while for (c,d) the
line separates x� α/β and x� α/β. Functions are plotted with (a,b) n = 4, K = 1, β = 1, and (c,d) β = 0.1, α = 0.05.

Furthermore, the concept of a saturation regime generalizes beyond functions which are conventionally thought of
as saturatable. Consider the additive function

Add(x) = βx+ α. (4)

We can see that this function, too, can be partitioned into saturation regimes to approximate it with monomial
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A geometric and structural approach to the analysis and design of biological circuit dynamics 5

structural regimes:

when x� α/β, Add(x) ≈ α,
when x� α/β, Add(x) ≈ βx.

(5)

Fig 1c,d depicts the linear addition function, Eq (4), in linear space and log-log space. Note that this generalized
notion of saturation for the addition function only becomes apparent in log-log space, as here the function can be
seen asymptotically approaching the structural regimes, which become straight lines in the log-log plot.

Now that we’ve presented the concept of saturation regimes for individual functions, we can move on to describing
how they apply to full systems. We will say that a system consists of n system variables governed by a set of n
ordinary differential equations (ODEs) which can be written in the form

dxi
dt

= f+i (x) − f
−
i (x), (6)

where f±i (x) are arbitrary functions of the system variables.

We then simply approximate each individual function f±i (x) into monomial form using its saturation regimes. The
system approximation will therefore take the form

dxi
dt

= k+i x
α+
i − k−i x

α−
i , (7)

where each term above is in monomial form as described in Eq. (3).

A system that takes the form of Eq. (7) is called a simple birth-death system. These systems are notable because
they are easy to analyze, particularly in terms of finding their fixed points. Much of the pioneering work that
applied simple birth-death systems to the analysis of biochemical systems, notably the work of Michael Savageau
[10], focused on this property. However, we emphasize a different property of these systems– that much of their
dynamics can be determined simply from the integer exponents α±

i , without considering the values of the rate
constants k±i . We will call these dynamics the system’s structural dynamics, because the mass-action view of the
monomial terms in the simple birth-death system interprets the exponents α±

i as the stoichiometry of the system’s
reactions.
2.2 The log-derivative transformation captures structural properties of the system
In order to analyze the structural dynamics of a simple birth-death system, we want to have a procedure that will
isolate the exponents α±. The log-derivative transformation h, defined for an arbitrary function f(x) as

h(f(x)) =
∂ log f(x)
∂ log x , (8)

is a useful tool to do this. If f(x) is of monomial form kxα, for example, we get h(f(x)) = α as desired.

The generalization of the log-derivative transformation for a multidimensional system is the log-derivative matrix
H, defined as

H ≡ H+ −H− =


∂ log f+1 (x)
∂ logx1

∂ log f+2 (x)
∂ logx1

. . . ∂ log f+n(x)
∂ logx1

∂ log f+1 (x)
∂ logx2

∂ log f+2 (x)
∂ logx2

. . . ∂ log f+n(x)
∂ logx2

...
... . . . ...

∂ log f+1 (x)
∂ logxn

∂ log f+2 (x)
∂ logxn . . . ∂ log f+n(x)

∂ logxn

−


∂ log f−1 (x)
∂ logx1

∂ log f−2 (x)
∂ logx1

. . . ∂ log f−n(x)
∂ logx1

∂ log f−1 (x)
∂ logx2

∂ log f−2 (x)
∂ logx2

. . . ∂ log f−n(x)
∂ logx2

...
... . . . ...

∂ log f−1 (x)
∂ logxn

∂ log f−2 (x)
∂ logxn . . . ∂ log f−n(x)

∂ logxn

. (9)
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6 A geometric and structural approach to the analysis and design of biological circuit dynamics

When H is applied to a simple birth-death system, the (i, j) entry of H± is the integer stoichiometry for the species
xi in the birth/death process governing the dynamics of the species xj.

Furthermore, although the terms in Hmay look complex, in practice they are quite simple to compute– indeed, H
can often be determined simply by looking at a circuit’s structure. (See Appendix B for some common log-derivative
identities).

An additional reason to use the log-derivative transformation is that, at steady state, it can provide information
about the system’s Jacobian. Recall that for an n-variable system governed by ODEs

dxi
dt

= fi(x) = f
+
i (x) − f

−
i (x), (10)

the Jacobian matrix

J =


∂f1(x)
∂x1

∂f2(x)
∂x1

. . . ∂fn(x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x2

. . . ∂fn(x)
∂x2...

... . . . ...
∂f1(x)
∂xn

∂f2(x)
∂xn

. . . ∂fn(x)
∂xn

 (11)

provides information about the stability of the system’s fixed points when evaluated at those points. In particular,
if the Jacobian matrix is Hurwitz, i.e. its eigenvalues all have negative real parts, then the fixed point is stable.

Similarly, when the log derivative matrix H is evaluated at a fixed point, it can determine whether the point is
structurally stable– by this we mean that the stability of the fixed point is determined solely from the system’s
structure, the α±, regardless of the values of the rate constants k±. When certain conditions are met, we can
guarantee that if H is Hurwitz then J is Hurwitz, therefore the fixed point is structurally stable. These conditions
include:

• If H and J are symmetric.

• If H and J are triangular (ie. the circuit is a feedforward circuit).

• If H+HT

2 is Hurwitz.

These are not the only conditions in which H implies information about the eigenvalues of J– in general one can
perform a simple test based on linear matrix inequalities to determine if H is informative (see Appendix A and [9]
for details).

Note that it is possible for a fixed point to be stable but not structurally stable. In such a situation, variations in the
rate parameters k±i could make the fixed point unstable. Throughout this work, we will focus on situations where
stability is structural, therefore it will suffice to consider H directly without computing J.

2.3 The analysis workflow for analyzing structural dynamics
Now that we have demonstrated the core concepts associated with the structural dynamics mindset, we will
illustrate their application to the analysis of a simple circuit, the leaky positive autoactivation motif.

This circuit consits of a single gene x which is produced at some leaky rate α and degraded at some rate γ. x also
activates its own production with Hill kinetics. The model for the circuit is

dx

dt
= α+

βxn

Kn + xn
− γx. (12)
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A geometric and structural approach to the analysis and design of biological circuit dynamics 7

We will begin by finding the system’s saturation regimes and determining its structural regimes there– in other
words, we will saturate the system’s birth and death terms until they are both monomials.

Since the death term, γx, is already a monomial, we do not need to perform any saturations there. We instead
focus on the birth term, α+ βxn

Kn+xn . The Hill term is a good place to begin– we can see that if x� K or if x� K,
we can approximate the system with simpler functions. In particular,

when x� K, dx

dt
≈ α+

β

Kn
xn − γx.

when x� K, dx

dt
≈ α+ β− γx.

(13)

Furthermore, we can see that in the x� K condition, an additional saturation exists in the additive term α+ β
Knx

n.

This term is saturated when α � β
Knx

n, ie. when x �
(
α
β

) 1
n
K. Incorporating this second saturation, we now

obtain the full set of the system’s saturation regimes:

when x� K and x�
(
α

β

) 1
n

K, dx

dt
≈ α− γx.

when x� K and x�
(
α

β

) 1
n

K, dx

dt
≈ β

Kn
xn − γx.

when x� K, dx

dt
≈ α+ β− γx.

(14)

These are depicted in Fig 2.

Note that the second saturation regime in Eq (14) contradicts itself unless α� β. Therefore this saturation regime
can only exist when this parameter condition is satisfied, ie. when the leaky production rate is smaller than the
saturated production rate from the Hill term.

Figure 2 The structural regimes of the leaky positive autoregulation motif, Eq (12). The birth term and death term of the
original model are plotted in red and blue, respectively. The model’s structural regimes are plotted in black, as in Fig 1.

The next step in our analysis is to compute the log-derivative transformation H (Eq (9)) at each structural regime to
determine its structural stability. We will also set the ODEs of each structural regime to steady state in order to
find the fixed points associated with each saturation regime, which we call the saturation fixed points.
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8 A geometric and structural approach to the analysis and design of biological circuit dynamics

Using the log-derivative identities given in Appendix B, we obtain

when dx
dt
≈ α− γx, H = −1 and x∗ =

α

γ
.

when dx
dt
≈ β

Kn
xn − γx, H = n− 1 and x∗ =

(
Knγ

β

) 1
n−1

.

when dx
dt
≈ α+ β− γx, H = −1 and x∗ =

α+ β

γ
.

(15)

Note that if n < 1, all of the saturation fixed points in this system are structurally stable. Therefore, in order
for the system to exhibit structural bistability, we require n > 1 so that one of the saturation fixed points can be
unstable.

For the final step in our analysis, we determine whether the saturation fixed points actually exist within the
saturation regimes they are associated with. This can be determined by applying the expressions defining the
saturation fixed points to the inequalities describing the saturation regimes to get an inequality on the system’s
parameters, which we call the regime consistency conditions because they determine whether a fixed point is
consistent with its associated saturation regime.

For our system, our regime consistency conditions are

when x� K and x�
(
α

β

) 1
n

K, x∗ =
α

γ
, so α

γ
� K and α

γ
�
(
α

β

) 1
n

K.

when x� K and x�
(
α

β

) 1
n

K, x∗ =

(
Knγ

β

) 1
n−1

, so
(
α

β

) 1
n

�
(
Kγ

β

) 1
n−1
� 1.

when x� K, x∗ =
α+ β

γ
, so α+ β

γ
� K.

(16)

We can see that in order to satisfy each of these individual consistency conditions, the system must satisfy additional
parameter constraints. For example, we see that the middle regime requires β� α and β� Kγ.

Now, in order to show that that the system exhibits structural bistability, we must show that none of the regime
consistency conditions contradict each other, so that all three steady states can simultaneously coexist. We see that
the conditions for the first two regimes above are internally consistent, as they can be written in the form

α

γK
�
(
α

β

) 1
n

�
(
Kγ

β

) 1
n−1
� 1. (17)

The final regime consistency condition can be written as

1� α

γK
+
β

γK
. (18)

Since Eq (17) implies that β/γK� 1, we can see that there is no contradiction between Eq (17) and Eq (18). Thus
all three regime conditions can coexist without contradiction, so all three steady states are able to coexist as long as
these parameter conditions are satisfied.

Thus we have determined that in order for the leaky positive autoactivation motif (Eq (12)) to exhibit structural
bistability, we need the leaky production rate to be small compared to the activated producction rate (α� β), we
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System dx
dt = α+ βxn

Kn+xn − γx

Saturation Regimes x�
(
α
β

) 1
n
K� K

(
α
β

) 1
n
K� x� K

(
α
β

) 1
n
K� K� x

Structural Regimes dx
dt ≈ α− γx dx

dt ≈
β
Knx

n − γx dx
dt ≈ α+ β− γx

Log-Derivative Transform H = −1 H = n− 1 H = −1

Structural Stability Stable Stable when n < 1 Stable

Saturation Fixed Point x∗ = α
γ x∗ =

(
Knγ
β

) 1
n−1

x∗ = α+β
γ

Consistency Conditions α
Kγ �

(
α
β

) 1
n � 1

(
α
β

) 1
n �

(
Kγ
β

) 1
n−1 � 1 1� α

γK + β
γK

Table 1 The concepts involved in the analysis of structural bistability in the leaky positive autoactivation circuit, Eq (12).

need cooperativity in the Hill term (n > 1), and we need strong production (β � Kγ). In addition, the regime
consistency conditions Eq ((17) and (18)) must be satisfied. Table 1 compiles the results of our analysis.

In addition to enabling the pipeline above, the conceptual tools we have described can be used in an exploratory
manner to reveal insights and intuition about a system’s dynamics. We will develop this point further in the next
section.

3 A geometric interpretation of structural regimes
In this section we will present a geometric interpretation of structural regimes that can give additional insights
about the relationship between the system’s structure and its dynamics. The core concept of the geometric
interpretation is to add variables to the system so that each possible saturation is associated with a single variable.
This allows the system to be plotted in geometric space in such a way that each dimension corresponds to a unique
saturation. We will continue to use the leaky positive autoactivation motif to illustrate these concepts.

3.1 The system expansion technique
Recall that the model for our system is

dx

dt
= α+

βxn

Kn + xn
− γx.

Note that this system has two possible saturations: one inside the Hill term (as in Eq (2)) and one associated
with the leak term (as in Eq (5)). The goal of the geometric interpretation is to associate each saturation with a
single dimension in a geometric space, so that their contribution to the system’s structural dynamics can be better
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10 A geometric and structural approach to the analysis and design of biological circuit dynamics

visualized. We will do this by defining additional system variables until each variable is associated with one
saturation. In this case, we have

dx1
dt

= α+ x2 − γx1,

ε
dx2
dt

=
βxn1

Kn + xn1
− x2.

(19)

The inclusion of the ε� 1 parameter ensures that after a very short timescale, the dx2
dt equation will equilibrate,

setting x2 =
βxn1
Kn+xn1

. Once this occurs, then the dynamics of the expanded model (Eq (19)) will be equivalent to
those of the original model (Eq (12)).

The system expansion technique can be described, in general, in the following way: suppose the original model
can be written in the form

dx

dt
= a(x) + b(x) + . . . + n(x), (20)

where the a(x),b(x), . . . ,n(x) terms are arbitrary functions of the system variables. Then a valid system expansion
introduces a new variable xb such that

εb
dxb
dt

= b(x) − xb, (21)

and modifies the original model to be

dx

dt
= a(x) + xb + . . . + n(x). (22)

We assert εb � 1 so that dxbdt will equilibrate quickly, yielding xb = b(x) so that Eq (22) will be equivalent to Eq
(20) after an εb timescale.

For the purposes of the geometric interpretation, the functions chosen to expand into new variables should be
those which are saturatable in the general sense. The procedure should then terminate once each ODE in the
expanded system is associated with only one saturatable term.
3.2 The saturation polytope
At this point, our normal analysis procedure would have us approximate the expanded model as a simple birth-
death system using its saturation regimes. However, for the geometric interpretation, we will actually compute the
log-derivative matrix H directly from Eq (19). Using the formulas given in Appendix B, we obtain

H =

[
−1 x2

α+x2

n
(

Kn

Kn+xn1

)
−1

]
. (23)

Note that each of the variable entries in H are bounded. If we write in the bounds for these entries, then we
have

H ∈
[

−1 [0, 1)
[n, 0) −1

]
, (24)

indicating that the top right entry of H ranges between 0 (when x2 = 0) and 1 (when x2 →∞), and that the bottom
left entry of H ranges between n (when x1 = 0) and 0 (when x1 →∞).

Thus we see that H itself is bounded within a rectangle whose vertices are defined by the bounds on the variable
entries of H. We will call this rectangle the saturation polytope, and it is visualized in Figure 3a. Because we
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A geometric and structural approach to the analysis and design of biological circuit dynamics 11

defined our system expansion such that each variable entry in H corresponds to a unique saturation in the system,
each vertex in the saturation polytope corresponds to one of the system’s saturation regimes. Furthermore, we can
compute the eigenvalues of H at each vertex of the saturation polytope to determine the structural stability of the
fixed point associated with each saturation regime. These are also shown in Figure 3.

Figure 3 The saturation polytope for the leaky positive autoactivation motif. Filled vertices are stable and open vertices
are unstable. Semicircles schematically represent the saturation regimes, ie. the regions of state space where the
structural regimes are appropriate approximations of the system. (a) Schematic diagrams of the structural regimes. (b)
1-dimensional manifolds showing the trajectory of H through the polytope after dx2/dt has equilibrated, for different
values of α. The direction of the arrows represent increasing x1, and all trajectories start at (n, 0) (trajectories are slightly
inset from the edges of the polytope for better visualization). Manifolds are plotted with n = 4, K = 1, β = 1.

There are a number of insights that we can obtain immediately from looking at H and the saturation polytope.
First, looking at the entries of H in Eq (23), we see that the only way that H can vary is via the entries that represent
the system’s saturations. Because H represents the system’s structural dynamics, we conclude that the system’s
structural dynamics can only be changed by modifications in the system’s saturation state. In particular, we see that H is
completely invariant to the values of β and γ.

Second, we see that ε does not appear in H. By making the Hill term its own species in the expanded model (Eq
(19)), we essentially introduced x2 as a delay term on x1’s autoactivation when we performed the system expansion.
By setting ε� 1, we set the timescale of the delay to be very short, but we now see that the structural dynamics
are unaffected by the timescale of this delay. Therefore we see that the structural dynamics of the system are invariant
to delays in its constituent processes. Such delays can also be implemented by introducing intermediate species into
the system, and the delay invariance property will still hold (see Appendix C).

Finally, we note that after an ε timescale, the dx2/dt term in the expanded system (Eq (19)) equilibrates, yielding
x∗2 =

βxn1
Kn+xn1

. This condenses the system down to one variable, so that H can now be written as

H =

 −1

(
βxn1
Kn+xn1

)
α+

(
βxn1
Kn+xn1

)
n
(

Kn

Kn+xn1

)
−1

. (25)
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12 A geometric and structural approach to the analysis and design of biological circuit dynamics

This means that as x1 varies, Hmoves in a one-dimensional trajectory through its polytope. The shape of these
trajectories is determined by the parameters of the system, namely by the relationship between β and α (Fig
3b).

We can interpret these different parameterizations as the relative ease with which the system saturates its various
possible saturations as x1 increases. In this case, the vertical axis of the polytope corresponds to the saturation of
the leak term, and the horizontal axis corresponds to the saturation of the Hill term. Given that Hmust pass near
the upper-left corner of the saturation polytope in order for the system to exhibit bistability, we thus obtain the
insight that in order for this system to exhibit structural bistability, the leak term must saturate before the Hill term.

While conventional analyses often convey requirements for dynamical properties in the form of parameter
relationships, this last point demonstrates how this geometric interpretation of structural dynamics allows insights
about such requirements to emerge in a much more intuitive conceptual language. We predict that such a
presentation will not only lead to a deeper understanding of the structure-function relationship in biological
circuits, but will also be critical to the successful design and implementation of circuits with desired dynamical
properties.

4 Structural oscillations in the Repressilator
Now that we have demonstrated how to analyze structural multistability in a system, we will now proceed to use
the framework to analyze structural oscillations in a simple model of the well-known Repressilator circuit [11].
The key distinction between this analysis and our previous analysis of the leaky positive autoactivation motif is
that here we will actively find that the regime consistency conditions are not satisfied. Instead of the system’s
fixed points coexisting within their respective saturation regimes, as occurred in the case for multistability, we will
instead find that each fixed point exists inside another saturation regime, such that one saturation regime will
“point” to another. This pointing will create a structurally stable oscillatory cycle (Fig 4).

To begin our analysis, we will construct a simple model of the Repressilator where each component is modeled
symmetrically with no leaky production, and where mRNA and protein dynamics are merged together. Then we
have

dx1
dt

=
α

1 + xn3
− x1,

dx2
dt

=
α

1 + xn1
− x2,

dx3
dt

=
α

1 + xn2
− x3.

(26)

Each species xi has two possible saturation regimes depending on the value of its repressor xj. If we specify the
ordering of indices as i = 1, 2, 3 and j = 3, 1, 2, then the structural regimes for xi (and their associated fixed points)
are

when xj � 1, dxi
dt

= α− xi, x∗i = α

when xj � 1, dxi
dt

=
α

xnj
− xi, x∗i =

α

x∗nj
. (27)

We now investigate the conditions under which this model exhibits structural oscillations. We will do this by
first finding conditions for the existence of structurally stable consistent fixed points, and then negating those
conditions.
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Figure 4 Part of the saturation polytope for the repressilator model in Eq (26), with α� 1 and n > 2. When the system
is in one of the saturation regimes shown above, it moves towards the stable fixed point associated with its structural
regime. Because this fixed point lies in different saturation regime, once the system gets close to the point, it becomes
attracted to another stable fixed point that is in a yet-again different saturation regime. This cycle forms an oscillation.
The two saturation regimes corresponding to all species being low concentration and all species being high concentration
are not shown here.

Consider the fixed point in the saturation regime where x1, x2, x3 � 1, which is (x∗1 , x∗2 , x∗3) = (α,α,α). The H

associated with this saturation regime is H =

−1 0 0
0 −1 0
0 0 −1

, which is Hurwitz, so the fixed point is structurally

stable. In order for this fixed point to exist inside the saturation regime, ie. (x∗1 , x∗2 , x∗3)� (1, 1, 1), it must be the
case that α� 1. Therefore, in order to make this structurally stable fixed point inconsistent with its saturation
regime, we must ensure α� 1. Doing so ensures that when the system is in the x1, x2, x3 � 1 saturation regime, it
will tend towards a stable attractor that lies outside of the regime. Thus the system will stay in this saturation
regime for only a transient period of time.

Now consider the fixed point in the saturation regime wherex1, x2, x3 � 1, which is (x∗1 , x∗2 , x∗3) = (α
1
n+1 ,α

1
n+1 ,α

1
n+1 ).

Since we have already claimed α� 1, this fixed point can exist inside the saturation regime without contradictions.

However, we note that the H (same as its Jacobian) associated with this saturation regime is H =

−1 0 −n
−n −1 0
0 −n −1

,

which has eigenvalues −(n + 1) and −1
2
(
n− 2± i

√
3n
)
. Therefore in order for this fixed point to be stable, we

require n < 2. Thus if we assert n > 2, then this fixed point is no longer stable.

Hence we now have two parameter conditions that are necessary for structural oscillations in this system: α� 1
and n > 2. For the six remaining regimes, we will see that no further constraints on the parameters are needed,
and these regimes contain an oscillatory cycle.

For the remaining six structural regimes, it can be easily shown that H is Hurwitz and triangular, meaning that
their fixed points will be structurally stable. Thus we will analyze the location of these fixed points, to see if they
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14 A geometric and structural approach to the analysis and design of biological circuit dynamics

lie inside their associated saturation regimes or not. For convenience, in this section we will adopt the notation of
(↑, ↓, ↑) to represent the saturation regime where x1 � 1, x2 � 1, and x3 � 1.

We will begin with the (↑, ↓, ↑) saturation regime. The fixed point associated with this saturation regime is
(x∗1 , x∗2 , x∗3) = (α−(n−1),αn(n−1)+1,α), which lies in the saturation regime given by (↓, ↑, ↑). The fixed point
associated with this saturation regime is (x∗1 , x∗2 , x∗3) = (αn(n−1)+1,α,α−(n−1)), which lies in saturation regime
(↑, ↑, ↓). This regime in turn has fixed point in the saturation regime we started with, (↑, ↓, ↑). This completes a
cycle among the saturation regimes that proceeds indefinitely (Fig 4).

Starting at one of the three remaining saturation regimes results in convergence to this same cycle. Consider one of
them, say (↑, ↓, ↓). Then the fixed point associated with this saturation regime is (x∗1 , x∗2 , x∗3) = (α,α1−n,α). Since
α� 1, we see that this fixed point lies in the (↑, ↓, ↑) saturation regime, which is one of the three regimes in the
cycle. The remaining two saturation regimes can be shown to converge to the cycle in the same way (Fig. 4).

We note that this conceptualization of the structural oscillations is qualitatively distinct from the conventional
dynamical systems approach used in the original analysis of the Repressilator [11]. There, requirements for
oscillations were determined by first determining that the system contains a single unique steady state, and then
determining conditions under which that steady state becomes unstable. The oscillations are then assumed to exist
in the form of a limit cycle, based on the assumption that there must be at least one stable attractor within the
phase space.

In contrast, our structural mindset sees the Repressilator’s oscillations as a linked series of three stable fixed
points, each of which point to each other by lying outside of their associated saturation regimes. As the system
tends towards one fixed point, it will eventually enter a new saturation regime, causing the system’s structural
regime to change. This invalidates the original fixed point the system was approaching, and creates a new stable
fixed point (in yet another saturation regime) that the system now follows. When this loop closes, the cycle
forms an oscillation. We argue that the structural mindset yields a much more intuitive conceptualization of the
Repressilator’s dynamics, as it is much more closely tied to the circuit’s structure of three interlinked repressors
and does not need to invoke a limit cycle to explain its oscillations.

5 Discussion
The case studies that we analyzed above illustrate how our theory is tailored towards the specific properties of
genetic circuits as biological systems. The distinction between our theory’s conceptual framework and the more
conventional dynamical systems approach to analyzing genetic circuit behavior is best highlighted in the case of
the Repressilator, where instead of the conventional notion of a stable limit cycle as a singular entity we frame its
oscillations as a set of stable fixed points pointing at each other. This conceptualization is much more grounded in
the biological reality of the system being studied. Similarly, the insights gained from the analysis of the leaky
positive autoactivation motif, by being framed in the language of saturation and structural dynamics rather than in
the specific parameters of a particular model implementation, are easily generalizable to a larger class of systems
beyond this specific circuit. Such generalizable insights will be essential for gaining the deep understanding of
the structure-function relationship in genetic systems that is required for the predicable engineering of complex
circuits.

Furthermore, our analysis approach is algorithmic, in that the same procedure is applied to analyze any circuit:
First, the system is saturated until all its structural regimes are found. Then, the saturation fixed points are
calculated, along with their stability. Finally, the regime consistency conditions are used to determine the location
of these fixed points. Each individual step is simple to perform and understand, regardless of the complexity of the
circuit being analyzed. Furthermore, although our saturation procedure is distinct from the recasting procedure
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developed by Voit and Savageau [12] for converting generalized mass-action systems into S-System form, it is still
similar in many respects, and the successful computerized automation of the recasting procedure [13, 14, 15] bodes
well for the ability to eventually automate our own saturation procedure.

The algorithmic nature of our analysis contrasts with conventional dynamical systems approaches to genetic circuit
analysis, which focus on phase diagram representations of the system’s dynamics– these often require numerical
solution of the ODEs and a complex intuition about how changes in parameters will affect changes in objects in the
phase plane. The end result is a system that does not scale well to analyzing large, complex circuits– each such
circuit must essentially be analyzed from scratch with an ad hoc approach.

Despite the advantages of our approach, there are still a number of points which need to be developed. The main
drawback is the lack of rigorous mathematical proofs and justifications for the various approximations we make,
and how the dynamics of these approximations (i.e. the structural regimes) connect back to the original system. In
particular, the structural regimes are good approximations for the original system when the system is far from the
border of a saturation regime, but closer to this border the approximation breaks down. Currently we assume
that the system dynamics transition smoothly from one structural regime to another, but this must be proven
rigorously. Furthermore, the utility of the structural regimes themselves must still be expanded further– continued
investigation into the connection between H and the Jacobian matrix J are ongoing.

When using this framework to aid in the design of circuits, however, this lack of rigor becomes less of an issue
because the predictions of our theory can be assessed directly by experiment without relying on mathematical
guarantees. Furthermore, the fact that the theory frames the dynamical properties directly through structural
concepts also aids in the experimental interrogation of these systems– when designing circuits, it is often much
easier to discretely add or remove structural components than it is to predictably tune arbitrary continuous
parameters.

Finally, we believe that the geometric interpretation of the system dynamics enabled by our framework will be of
great use in better developing an intuition of the link between system structure and function. This mindset could,
for example, be incorporated into courses introducing biology students to dynamical systems analysis to better
facilitate the bridge between intuitive structural ideas and their mathematical representations.

In conclusion, we hope that the advantages of this framework will not only prove useful to synthetic biologists in
designing more complex circuits, but will also inspire more groups to follow the strategy of developing conceptual
languages that are tailored to the needs of biological systems rather than relying on the conceptual language of
other disciplines. Such an approach, when taken in complement with existing efforts to make biological systems
more amenable to analysis by theoretical tools from the engineering sciences, will hopefully lead to a more holistic
and fundamental understanding of the design principles governing biological systems.
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7 Appendix A: How the log derivative relates to the Jacobian
Here we state and explain the relationship between log derivatives and the Jacobian to help give a concrete setting
to our dicussion. For details of derivation and proof, see [cite Xiao et. al.].

Starting with a system of the form Eq (6), if we linearize the system at a fixed point x∗ where f(x∗) = 0, we have
the following relationship between the Jacobian J and the log derivative matrixH:

J :=
∂f

∂x
(x∗) = Λx∗Λ

−1
τ HΛ

−1
x∗ . (28)

Here Λv denote diag(v), diagonal matrix with v along the diagonal. τ = x∗

f(x∗) is vector of time scales, always
positive. τi can be considered the average life time that a molecule of xi lives before it gets degraded [16].

Note that for a simple birth-death system, ie. a system of the form Eq (7),H is a constant integer matrix capturing
the structure, while all rate-dependence are in Λx∗ and Λτ. So if we can show the fixed point is stable just from
properties ofH, then the fixed point is stable regardless of rates and parameters.

Inspecting the relation between Jacobian andH in Eq (28), immediately, we see that J is similar toΛ−1
τ H, so J’s

eigenvalues are independent of x∗, the position of the fixed point. In other words, if we keepH fixed, then stability
of a fixed point depends on the time scale τ at that fixed point, not the location of the fixed point.

Also, directly from Eq (28), with some well-known results from linear algebra, we seeH is Hurwitz implies J is
Hurwitz ifH is triangular or symmetric. For the triangular case, we know a triangular matrix’s eigenvalues are on
the diagonal. SinceH is triangular if and only if J is triangular, and J’s diagonal values are equal toH’s diagonal
values multiplied by positive numbers from τ and x∗, we see the sign of their diagonal values, i.e. eigenvalues, are
the same. For the symmetric case, we can utilize Sylvester’s law of inertia, which states that symmetric matrices
that are congruent to each other have same number of positive, zero, and negative eigenvalues. This is applicable if
H is symmetric, as J is similar toΛ−1/2

τ HΛ
−1/2
τ , which in turn is congruent toH.

With some more work, utilizing the relation between Jacobian andH in Eq (28) allows us to state the following
theorem for a test where some condition for H guarantees x∗ is stable regardless of rate-dependence in τ and
x∗.

Theorem 7.1. The following statements are equivalent:

1. J is stable with a diagonal P > 0 certifying it, i.e. JᵀP+ PJ < 0.

2. H is stable with a diagonal P > 0 certifying it.

3. There exists a positive diagonal similarity transformation ofH, H̃ = D−1HD withD diagonal with positive entries,
s.t. H̃+H̃ᵀ

2 < 0.

In particular, they imply that J is structurally stable (independent of x∗ and τ).

Note that any matrix J is Hurwitz if and only if there exists a positive definite P satisfying JᵀP + PJ < 0. So
structural stability is restricting P to be positive definite and diagonal [17]. The test stated in the theorem is in the
form of a linear matrix inequality, which can be solved efficiently [18].
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8 Appendix B: Some convenient log-derivative forms
For general functions f(x),

d log f(x)
d log x =

d log f(x)
dx x

d log(x+ α)
d log x =

x

α+ x

d log
(
xn

α+xn

)
d log x = n

(
α

α+ xn

)
If f(x) is a monomial, ie. f(x) = k1x

n1
1 xn2

2 , then
d log f(x)
d log x1

=
d log k1 + n1 log x1 + n2 log x2

d log x1
= n1.

9 Appendix C: Structural dynamics are invariant to the timescale of the system’s
constituent processes

In this section we will further explore the notion of delay invariance presented in section 3.2.

Recall that we intepreted the system expansion, Eq (19), as adding a delay onto the Hill activation term in the
original model. We can apply this principle further to expand the system into additional variables simply to add
more delays into the system’s dynamics. Recall that our model is

dx

dt
= α+

βxn

Kn + xn
− γx.

This can be expanded into
dx1
dt

= α+ x4 − γx1,

ε2
dx2
dt

= x1 − x2,

ε3
dx3
dt

= xn2 − x3,

ε4
dx4
dt

=
βx3

Kn + x3
− x4.

(29)

This expanded system can be interpreted as follows: the x2 variable now represents a distinct molecular species
that is generated from x1 at timescale ε2– perhaps x1 is the mRNA and x2 is the protein associated with the gene X.
The x3 variable now represents an n-mer of the x2 species, which takes an ε3 timescale to form. Finally, the x4
variable now represents the Hill activation of x1 activation, with a delay ε4.

If we assert that all the εi � 1, then the expanded ODEs will equilibrate rapidly and the dynamics of of the
expanded model will track the dynamics of the original model. However, we see that if we compute H for the
expanded model, we obtain

H =


−1 0 0 x4

α+x4
1 −1 0 0
0 n −1 0
0 0 n

(
Kn

Kn+x3

)
−1

 ∈

−1 0 0 [0, 1)
1 −1 0 0
0 n −1 0
0 0 [n, 0) −1

, (30)
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where in the right hand representation we use the same bound notation as in Eq (24).

We can see that the Hmatrix in Eq (30), like that in the earlier expanded H in Eq (24), can only vary via the entries
which represent the system’s two possible saturations. Furthermore, if we compute the eigenvalues for H at each
vertex of the saturation polytope, we find that stabilities at each fixed point are the same as in the earlier analysis.
Notably, we see that once again the εi terms do not appear in H.

This means that the structural dynamics of this system are invariant not only to delays in the Hill autoactivation
term, but also to translational delays and delays in multimerization. In fact, because for any function f(x) it is true
that

ε
dx

dt
= f(x) =⇒ dx

dt
=

1
ε
f(x) =⇒ h

(
dx

dt

)
=
∂ log

( 1
εf(x)

)
∂ log x =

∂
(
log
( 1
ε

)
+ log f(x)

)
∂ log x =

∂ log f(x)
∂ log x , (31)

we know that the timescale terms εwill never appear in the log-derivative matrix H.

In fact, the implication of Eq (31) applies more generally than just to timescales– any scalar coefficient on f(x) will
disappear from H in the same way. Therefore H is invariant to any scaling of the rates on its constitutent delay
processes– we could have expanded the system as

dx1
dt

= α+ x4 − γx1,

ε2
dx2
dt

= k+2 x1 − k
−
2 x2,

ε3
dx3
dt

= k+3 x
n
2 − k−3 x3,

ε4
dx4
dt

=
k+4 βx3
Kn + x3

− k−4 x4,

(32)

with all the parameters k±i allowed to freely vary, and we would obtain the same Hwe obtained in Eq (30).

We can therefore conclude that the structural dynamics of any system are invariant to the timescales of any of its constituent
biomolecular processes, including those introduced by the addition of direct intermediate species. It is important to note
that this claim applies only to timescales and delays that are nascent in the original model– if we manually added
new terms that altered the structure of the system, then the claim would no longer hold. The system expansion
technique is able to extract these nascent delays because it does not modify the original model’s dynamics if the ε
parameters are set to 0.
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